我们提出了Boareskinnet,这是一种新颖的方法,可以同时去除面部图像的化妆和照明影响。我们的方法利用3D形态模型,不需要参考干净的面部图像或指定的光条件。通过结合3D面重建的过程,我们可以轻松获得3D几何和粗3D纹理。使用此信息,我们可以通过图像翻译网络推断出归一化的3D面纹理图(扩散,正常,粗糙和镜面)。因此,没有不良信息的重建3D面部纹理将显着受益于随后的过程,例如重新照明或重新制作。在实验中,我们表明Bareskinnet优于最先进的化妆方法。此外,我们的方法有助于卸妆以生成一致的高保真纹理图,这使其可扩展到许多现实的面部生成应用。它还可以在相应的3D数据之前和之后自动构建面部化妆图像的图形资产。这将有助于艺术家加速他们的作品,例如3D Makeup Avatar创作。
translated by 谷歌翻译
Vehicle routing problems and other combinatorial optimization problems have been approximately solved by reinforcement learning agents with policies based on encoder-decoder models with attention mechanisms. These techniques are of substantial interest but still cannot solve the complex routing problems that arise in a realistic setting which can have many trucks and complex requirements. With the aim of making reinforcement learning a viable technique for supply chain optimization, we develop new extensions to encoder-decoder models for vehicle routing that allow for complex supply chains using classical computing today and quantum computing in the future. We make two major generalizations. First, our model allows for routing problems with multiple trucks. Second, we move away from the simple requirement of having a truck deliver items from nodes to one special depot node, and instead allow for a complex tensor demand structure. We show how our model, even if trained only for a small number of trucks, can be embedded into a large supply chain to yield viable solutions.
translated by 谷歌翻译
Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.
translated by 谷歌翻译
自我监督学习(SSL)被视为一种非常有前途的方法,对于下游任务的几个语音,高性能。由于SSL模型的参数通常是如此之大,以至于训练和推理需要大量的内存和计算成本,因此希望通过应用诸如知识蒸馏(KD)等压缩方法来生成紧凑的SSL模型,而无需显着性能降解。尽管KD方法能够缩小SSL模型结构的深度和/或宽度,但几乎没有研究如何改变深度和宽度对小脚印模型的内部表示。本文提供了一项解决问题的经验研究。我们在改变结构和KD方法的同时研究了Superb的性能,以保持参数恒定的数量;这使我们能够分析通过改变模型体系结构引入的表示的贡献。实验表明,一定深度对于准确地求解面向内容的任务(例如自动语音识别)至关重要,而在几个面向讲话者的任务上(例如,说话者的身份),必须进行一定宽度对于实现高性能。基于这些观察结果,我们确定了与以前的研究相比,具有更好性能的更高压模型。
translated by 谷歌翻译